【資料圖】
1、1.定義一般地,對(duì)于函數(shù)f(x)(1)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù).(2)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù).(3)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù).(4)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù).說明:①奇、偶性是函數(shù)的整體性質(zhì),對(duì)整個(gè)定義域而言②奇、偶函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱,如果一個(gè)函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則這個(gè)函數(shù)一定不是奇(或偶)函數(shù).(分析:判斷函數(shù)的奇偶性,首先是檢驗(yàn)其定義域是否關(guān)于原點(diǎn)對(duì)稱,然后再嚴(yán)格按照奇、偶性的定義經(jīng)過化簡、整理、再與f(x)比較得出結(jié)論)③判斷或證明函數(shù)是否具有奇偶性的根據(jù)是定義2.奇偶函數(shù)圖像的特征:定理 奇函數(shù)的圖像關(guān)于原點(diǎn)成中心對(duì)稱圖形,偶函數(shù)的圖象關(guān)于y軸對(duì)稱.f(x)為奇函數(shù)《==》f(x)的圖像關(guān)于原點(diǎn)對(duì)稱點(diǎn)(x,y)→(-x,-y)奇函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對(duì)稱區(qū)間上也是單調(diào)遞增.偶函數(shù) 在某一區(qū)間上單調(diào)遞增,則在它的對(duì)稱區(qū)間上單調(diào)遞減。
本文就為大家分享到這里,希望小伙伴們會(huì)喜歡。
標(biāo)簽:
相關(guān)新聞
保險(xiǎn)時(shí)訊
10-21
10-21
10-21
10-21
10-21
10-21
10-21
10-21
10-21
10-21
聚焦百姓
更多>